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Abstract

First, inviscid, non-linear,
quasi-similarity theory is applied to a
long body in a hypersonic scurce flow,
and second, linearized theory for a
pointed body is treated by the method of
source distribution. These source flow
results show large decrease in the
surface pressure distribution compared
with the parallel ones in the rear part
of the body, if the distance from the
nose to the body surface normalized by
the source-nose distance, increases
beyond about 0.1. Third, it is shown
that there exists one-to-one correspon-
dence between source flow problem and
parallel one in the slender body theory
when the ratio vy of specific heats of gas
is equal to 2. This result, combined
with the empirical assumption that the
pressure coefficient is insensitive to
the difference of the value of v, is
useful to give an estimation of the
pressure distribution over a power-law
body in a parallel flow,if the pressure
over the modified body in a source flow
is obtained theoretically or experimen-
tally, provided that the viscous effect
is ignored. Last, pressure distributions
along power-law bodies measured in the
conical nozzle of a hypersonic shock
tunnel are compared with the non-linear
theory, and also the source-parallel
conversion result, giving essentially
good coincidences.

I. Theory

I-A. Quasi-similarity theory

Studies of supersonic source flow
past bodies have been of current interests,
because these simulate the flow in a
divergent section of a hypersonic wind-
tunnel, or the one in a central core of
the low density free jet, etc.. Many of
theoretical analyses use Newtonian theory
or its modification as given by Halll,
Brun and Guibergia? etc., while method of
characteristics is used by Baradell and
Bertram® and Stiveges® etc.. Also, Savage®
and Gorgui® applied a direct perturbation
method to the source flow past wedges or
cones, and presented the first order
results, which, however, is useful for
rather narrow region behind the nose.
Yasuhara and Watanabe’ applied the
similarity expansion for power-law bodies
in the special case of the ratio of
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specific heats of 2.0.

The present part deals with the
hypersonic source flow past a long slender
body by the quasi-similarity approximation.
and

A-1. Source flow, shock condition,

basic eguations

In an inviscid, steady, supersonic
flow expanding cylindrically (8=1) or
spherically (R=1), the flow gquantities at
a distance r from the effective source,
can be obtained from the simple nozzle
flow relations. Denote T; is the

temperature, p, the pressure, p1 the
density, u, the radial velocity, M; the
local Mach number in the free stream at
radial distance r from the source. Also
suffixes "o" and "*" denote quanities at
the stagnation and the imaginary sonic
point, respectively. The log—%og glgt of
flow quantities against (r/r*)"= (s)

for y=1.4 are shown in Fig.l. For
moderately, high values of M; compared to
unity, flow quantities are approximated
as follows:

-Bye -Be
P1/py = 8 ; P1/Oy = S ,
N N (1)
- A
ul/uN=SB(€ l),Ml/MN=SB ,
where
- = M2 2
s = r/rN , € E MN/(MN 1y ,
Yy + 1
Az . € -1 .
2
In the above, suffix "N" denotes exact

quantities at the nose of the body r=r
(s=1), 6=0. Eqg. (1) gives accurate
values around r=r . because the above
equations express tangential lines to
each curve at (r./r*) in Fig.l. The
larger the value of , the wider the
range of applicability of Eq. (1) is.

Now, as shown in Fig.2, an
axisymmetric hypersonic source flow past a
slender body with a closed nose, is
considered, in which the shock wave is
assumed to be attached to the nose of the
body at r=r,. The cylindrical or spheri-
cal polar coordinates (r,0) are used. In
this system, the position of the shock
and body surface at r are expressed,
respectively, by:



(2)

where the subscript "w" and "b" denote
quantities just behind the shock wave

and along the body surface.

With these notations, the shock angle o
between the radial ray and the shock line
is given by:

tan ¢ s6'

rdew/dr o' (3)

sdew/ds
where "'" denotes the differentiation
with respect to s. If o<<1l, then the
quantities just behind the shock wave are
given by:

2p;uio? vy-1 _
p, = —— {1 - —— (My0) 2 } ,
(y+1) 2y
{(y+1) (M;0)?
Py = P1 T
2+ (y~1) (M;0)?
(4)
2u30% (M;0)? - 1
u, = up - = u; ,
(v+1) (My0)2
2u,0  (Mo)? -1
Vw=
(y+1) (My0)?

provided that M;o0>1, where u and v are the
radial and 6-wise velocity components,
respectively. If 6 in the disturbed

field is very small compared to unity,

the basic equations of motion are given
by:

1 3 1 3
< (ourB) pr e (oveB l) =0,
r~ dr r6 96
du v du v 1 3p
U —— = o e e = o= —
or r 38 r p or
(5)
v v v uv 1 9p
U — = p— = — —
or r 36 r pr 936
9 Y v 3
u— (p/p") +—— (p/p¥) = 0.
ar r 98

A-2. Quasi-similarity theory

Referring to the shock condition Eq.
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(4),
flow
into

the independent variables (r,6) and
variables p,p,u and v are transformed
(£,n) and P,R,U and V as follows,

M o ' n=8/8, (6)

pluiczP(gm), P DIR(E,T]) ’

(7)

u v

ulU(g,n), uIOV(a,n).

Then, after neglecting smaller quantities
of 0(6?%) compared to unity, Eq.(5) is
transformed into:

(RV)n - n(RU)n + (B=1)RV/n -vE (RU)

6’

B(e-1)wU? + (V-nu) U, = -vEUU

E’
(8)

[(1 - 8(v-1) e/2} w + v] RUV

+ (V—nU)RVn + Pn = —-VEURV

EI

-vE (URP ).

1]

2VPUR +(V—nU)(RPn—YPRn) -YUPR

g £

where subscripts "n" and "E" denote partial
differentiations with respect to n and §
respectively, and:

BA+1

£ = Mlo = MNQQS ,
v = ewg'/(eéi) = (1+BA)w+y, (9)
w =08 /(s6)), w = 0, 0w/ 00" -

Also the shock condition Eq. (4) at n=1

(6=6w), is transformed into:

2(2yg%-y+1)

Fu T P = (y+1) 2y&?
i (y+1)g?
T RED e
(10)
U, = U, =1,
2(£2-1)
v, = V(L) = e .



The other boundary condition at the body
surface is given by the tangency of the
stream-line and the velocity there, that
is:

(v/u)b = seé , Or Vb/Ub = eg/e& . (11)
The similarity solution exists when P, R,
U and V, including their boundary values
at the shock and the body surface, are
functions of n alone. These conditions
are satisfied when w, v and § given by
Egq. (9) are kept constants. At the same
time, the following condition must be
satisfied:

eb/ew =n, = const.. (12)
Formally,_g&ese conditions are satisfied
when ewms , which, however, is
unreallstic in the present problem,
because the condition of the closed nose
of the body and the attached shock wave
(6. =0 at s=1) can not be satisfied. The
sifiilarity condition for which £2>>1 is
the same as shown by Yasuhara’.

In general, the similarity conditions
can not always be satisfied, and the local
similarity approximation is tried here.

If all variables along the shock wave and
the body surface vary sufficiently slowly
with s, then &, w and v in Eqg. (8) are
assumed to take on their local values at
each s. Further, following to Oshima's
quasi-similarity assumption?,
¢-derivatives in the form Q. /Q in Eq. (8)
is evaluated at the shock, %Qw)g/Qw, that
is:

A e s S

p E(2yE2-v+1) R g{(y-1)g%+2}
(13)

U v, 2

__g.zo_, —é=—."—'—.

U v E(E2-1)

Use of Eg.(13) in the right-hand terms of
Eq. (8) makes the solution more accurate
even for values of { not very large
compared to unity.

In these manners, Eg.(8) can be
regarded as the ordinary differential
equations with w, v and £ as parameters,
and thus integrable from the shock to the
body surface. The condition Eq. (11)
requires some consideration. If Bb(s)mQ
(s), then n, is independent of s. W
However, in general, n, is a function of

s through parameters £, w and u, Thus,
using the relation:
Gw = eb/”b' (14)

Eq. (11) is expressed in terms of eb(s) and
nb(s) as

\Y% 6. n
(—-) =2 b ) (15)
b

b 1-(ng/ny) (8,/6))

Unless the term n'/nb is known apriori,
the right-hand sige of Eg. (15) can not be
evaluated as the boundary condition. To
express this term as a function of s, an
iteration is necessary. With the aid of
Eq.(14), w, v and £ are expressed in terms
of s, eb, n, and their derivatives with
respect to Q, that is n,, eé and eg.

Now, at the nose of the body s=1, 70
equals to zero and therefore w=0 and u
takes some constant value there. Also,
assuming several values of nb(s=1)=noi,
for example, n i=0'85' 0.90 etc., the
corresponding values of £=£0. at s=1, are
calculated. Then the right—ﬁand sides of
Eg. (13) can be calculated. Introducing
the above relations into the right-hand
side of Eqg. (8), the system of ordinary
equations for R,U,V and P can be integrated
for each set of (n,.,&;;) from n=1 down to
n, where V-nU=0 ho?és. 1The calculated
vglues of n, are compared with the assumed
values of n 17 and by interpolating and
further iterating the procedure, the value
of n,, as well as all values at s=1 are
determined. Next, to integrate the
equations for s larger than 1, the range
of s to be calculated is divided into k
parts., and the value of n,, as a function
of s, is approximated by tge continuation
of inclined line segments as follows:

- - - 2
M, 3™, §-1*3 (9378310485 (957850 /20

3= e ieenneens Ky
' o= 4d ./ds = a.+B. (s.-sS.
b, = Mp, 3798 = agrBylsyTsy )y
”b,j = Bj,
with n at s = 1.

=n
After geter%ining all values at S=S._y/
values at s=s. can be integrated asd
follows: by agsuming several values of o,
and B., the values of n,_ ., n! . n . an
£. can be calculated, f?é& wh?éﬂ tgé]
corresponging values of w, u and & are
obtained. Then with the help of Eqg. (13),
Eqg. (8) can be integrated from n=1 down to
n=ny . where Eqg. (15) holds. Then deduced
valiés of n are compared with the
assumed valués of n, ., and by interpolat-
ing and further iteré%ing the procedure,
the value of Ny and a., B. as well as all
values at s=s. Ale determindd. In the
following comgutations, ny is assumed to be
zero as an approximation.

A-3. Power-law body

In the present section, solutions of
the source flow past slender power-law
bodies with conical asymtote is treated.
The equation of the body considered is
given by:
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8, = 6(1—§)m , §<<1 (16)

b

where m=1 corresponds to a circular cone.

With the above eb introduced into Eq. (15),
we have:
Vp/ (n0) ) = l/{1~ngs(s—l)/(mnb)} (17)

It is easily shown that at s=1, Eq.(17),

w, W and £ reduce to:
(V/nU)b =1, w=0, u= (m1)/m,
£ = MNG/nb, for m=1,
£ = =, for m < 1.

The value of £ at s=1 for m=1 can not be
given apriori unless the value of n,_ there
is known, and must be obtained by ag
iteration. To accomplish this, first
assuming several values of £,, Eqg.(8) is
integrated from the shock to the body
surface, under the condition that u=w=0,
and then, from the obtained values of
?bg(gi), the correct value of £ is
interpolated so as the relation &=M_§/n
is satisfied. 1In the case when m<i§ thg
value of £ at s=1 can be assumed as
infinity.

For the value of s greater than unity,
the successive approximation described in
the preceding section is performed.

Several numerical results for m=1l
and 3/4 with y=1.4 are shown as follows:

1) Circular cone

The results of cone (m=1l) with
semivertex angle of 15° in a point source
flow (B=2), are shown in Fig.3 to 6.
Figs.3 and 4 show the values of n, and §
as functions of s for nose Mach number
of M.=7.5 and «, Fig.5 shows the pressure
function P as the function of n for
several values of s in the case =7.5.
From the figures it can be seen ﬁgat P
does not vary so much in between the
shock (n=1) and the body surface (n=n
for each s. Also n

s increases from 17
coefficient C 1
referred to tha
is given by:

The pressure
along the cone surface
free stream pressure 121

Py =P
Co1 b1
~ 2
pUN/ 2
(18)
2(tan20L)Pb 2
= ————={1-s(s-1)n;/n,_}%-
2 guz€ b’ ''b €
NS 2 YM&SZY
Therefore in the case of =, if P, and

n,. are taken as their mean values w?th
Ny, neglected, then Py, is proportional to

)
slightly diminisﬁes as
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s *. TFigs.6a and 6b show the pressure

pressure distributions along the cone
surface when M_.=7.5, and «~, showing the
large variation of C as s increases.
Such a large variati % of pressure along
the surface demonstrates that the power
series expansion of flow guantities in
powers of (s-1) is inadecuate beyound
s>1.1.
For comparison, the Newtonian

pressure distribution corresponding to

= is calculated as follows. In this
case, the pressure on the surface at
radial distance r is given by:

r sino=r.sina. Therefore

where o=0-0_, N

when a8 <<1,
W

pb/(%pNuﬁ) 2sin?a/s? = 202/s".

That is, the pressure is proportional to
s *. Fig.6b shows also the result for

M =» calculated by Gorgui for y=1.4, and
the one calculated by the Newtonian
approximation. The present results
essentially coincide with Gorgui's one
near the nose region{s=1.1.1). The
present result and the Newtonian one for
M=o show essentially a good comparison
for a wide renge of s (s=1-2).

2) 3/4 power-law body

This corresponds to the body shown
in Eq.(16) with m=3/4, which has the 3/4
power-law body near the nose, and appro-
aches a cone asymptotically as s
increases. Calculating procedure is
almost the same as 1) except the nose
point s=1. Figs.3 and 4 show the values
of np and ¢ as functions of s for =7.5.
Fig.7 shows the pressure distribution
along the surface.

I-B. Linearized theory

In hypersonic flows, most of the
important problems require non-isentropic,
non-linear teatments. However, if the
body is very slender in the sense that
the effective hypersonic surface parameter
¥ (the product of the local free stream
mach number M; and the angle & of the body
surface with “respect to the local free
stream direction), is smaller than unity,
the flow field can be assumed as
isentropic with good accuracy, and the
supersonic potential flow theory is
applicable. Further, the perturbed
equation can be linearized when x is
moderately smaller than unity.

In the present section, the source
flow over a very slender body of
revolution is discussed by a linearized
perturbation theory.

In the polar coordinates system
(r,6), the basic equations of the
axisymmetric flow over a pointed body of



revolution, are given by Eq.(5). It is
assumed that x=M,e is smaller than unity,
which implies that 6 in the disturbed

flow field is very small everywhere.
Because the flow is assumed to be isentro-
pic, there exists a velocity potential ¢
defined by:

3

o

1

z ~-0 (19)
r 0

1
rr VET
r

3

@

Then the gas dynamic equation is
derived from Eq.(5) and (19) as follows:

¢ 2 ) 9,2 20 9 @
@rr(l__E_) + 298 . r 6 6r
a r? r?a? r?a?
) ¢62 9, cotd
+ —=(2+ )+ = 0. (20)
r r2a? r?

Here, the square a®? of the local
sound speed takes the form:

1 @62
a? = (y-l)(H—-@rz————),
2 2r?
where
Y p 1
H £ ~— — + — (u?+v?) = const..
y=1 p 2

® is divided into free stream and
perturbation potentials ¢O and ¢l by:

o(x,0) = ¢0(r) + ¢, (x,0),
i 1
u=9%¢ =9 + ¢4, V=—=b.=~—%
r Or 1ir r ] r 186 (21)

It is assumed that the body is very
slender and the perturbed velocity
components are very small compared with
the free stream velocity such that:

1
S0 b1r v ;¢1e'

Then after higher order terms than 0(v/a)
are neglected, Eqg.(20) is reduced to:
2

-M2 — =
(1-Mp) by * r¢0r 0,

2 2
2Ml{2+(Y-l)Ml}

(1-M,) ¢ + )
1" 1rx r(l—Mi) 1r
¢ 2 ¢
#2108 4y w22, (22)
r? r pr?
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where M, can be approximated by:

M, = MNsY‘l (23)

If the non-dimensional variables z and w
are introduced by:

, with MN>>1'

z = s” -, w

MNG (24)

then with the aid of Eqg. (23), the pertur-
bation equation Eq. (22) for ¢l' is
transformed into:

k 1
%12z ¥ ;¢1z T 0w T %10 T 0 (25)
where
k = (2-v)/(y-1).
Further, when ¥ is introduced by:
¢y = v/z, (26)
then Eq.(25) is transformed into:
2=k 1
Vo * v, - www - —ww = 0. (27)

Z

€

Eq. (25) is solved by Yasuharal? et
al. for y=2(k=0) and y=1.5(k=1), using
the menthod of source distribution.

While if y=4/3, then k=2 and Eq. (27) has
the same form as Eg. (25) for k=0. The
general solution of ¢, for a pointed body
with y=4/3 can be expressed as follows:

13 h(nydn; 1 cosh_l(S—n)/m
¢l=—J “*“*—*———=—fh(n+wcosho)dc
n’ n+w »/(nl-n)z—w2 n’o
(28)
n = 3/s%/3,

where h(n,) denotes the source
distribution function along the body axis,
to be determined from the surface
condition. The boundary condition along
the body surface gives that:

{Qe/(IQr)}b = (v/u)y = rdé, /dr,
or (29)
9u,.r,. dw
(¢lw)b =T e ’

Mgn? dn

where u, is the free-stream velocity at
the nose of the bodyv.

The pressure coefficient Cp referred



to the free~stream pressure p
nose is given by:

N at the

Co = (pympy)/ (Pyug/2) (30)

The perturbed pressure coefficient
C 1 referred to the local free-stream
pgessure P, 1s, within the present
approximation, expressed by:

Cor = (P,=Pp)/ (pyug/2)
1 ¢ ¢
= - q2dry (182 (31)
s? uy ruy

Practical methods of solution for y=4/3
are almost the same as given in Ref.10.

Fig.8 shows the calculated pressure
distribution along the very slender cone
with the semi-vertex angle a=4° when
M§=7.5. Also shown in the figure are
the results when v=2.0 and 1.5 obtained
in Ref.10, respectively. All these
curves are close each other, and this
shows that the pressure distribution
expressed in the form C is, practically
not sensitive to the di?%erence in the
value of y. However, if it is expressed
in the form C_, then appreciable
differences cBn be seen as shown in
Ref.10.

I-c. Equivalency between source and
parallel flows for y=2,.

As shown shortly in Ref.7, there is
some one-to-one correspondence relation
between source flow problem and parallel
one in inviscid, hypersonic small distur-
bance theory, provided that y=2,

According to this relation, the problem
for the power-law cone in a hypersonic
source flow expressed by the polar
coordinates 0, =§(l-1/s)", is eguivalent
to the one fof the power-law body in the
parallel flow expressed by the cylindrical
coordinates y /L=6(x/L)m. If the problem
for the paral?el flow with the free stream
Mach number of is solved, the pressure
coefficient Co(x L; ,Y) is expressed in
terms of x/L.- Then, the corresponding
pressure coefficient C referred to the
free stream pressure pj in the source flow
with the free stream nose Mach number of

, can be related to C_ through the
simple conversion relatPon:

Cp1 (8iMy V)=C,(1-1/5:My,v) /s*=C /s",

provided that y=2., In the above, x/L in
the expression of C_ for the parallel
flow is replaced bypl-l/s.

Now, although the above value of
y{(=2) is different from that for actual
gases, if the coefficient C_ in the
parallel flow is not much sBnsitive to
such a difference of vy, as shown in
Lees and Kubota's analvses (Ref.l1l1l, 12),
then C for the source flow with y, can
be obtg%ned from C_(x/L; Mg, Y), by simply
dividing it by s“,Yin whichH x/L should
be replaced by 1-1/s, that is:

- — p— - u
Cpl(s,MN,Yl)—Cp(l 1/s,MN,Y)/s .

In the above conversion, it is assumed
that the term C_ on the right-hand side
is also insensiPive to the difference of
Yy in the source flow problem.

In Figs.6 and 7, the pressure
distributions along the cone and the 3/4
power-law nosed cone, calculated by
applying the above equivalence relation
are shown. The equivalence results and
the quasi-similarity results show good
comparisons as a whole.

II. Experiments

II-A Shock tunnel and test conditions.

Experiments on hypersonic source
flows over long slender cone, 3/4 power-
law body and hemisphere cylinder, etc.,
are performed in a conical nozzle of the
shock tunnel at the Nagoya University.

The Mach number of the free stream at
the nose of bodies are fixed to 7.5, and
surface pressures are measured and
compared with the above theories. The
details of the tunnel are shown in Ref.l1l3,
and therefore shortly described here.

The tunnel consists of the driver tube
(200mm¢x5302mm) , the driven tube (100mm¢
x9998mm) , the conical nozzle (10° semi-
vertex angle with throat and exit diameters
of 13mm¢ and 300mm¢), and the dump tank
(1450mm¢ x 6125mm). The initial pressures
of the driver, driven tube and the dump
tank are fixed to 41.0kg/cm?, 1.03kg/cm?,
and 0.1 torr, respectively.

The configuration of the nozzle and
test section is shown in Fig.9. Air is
used as the working gas.

The models employed are shown in Fig.
10. Each pressure hole on a model surface
(1.5 or 2.0mm¢) is connected to a piezo
resistance type pressure gauge directly,
or through a 1.5mm¢ lead-pipe. The pressue
P, in the stagnation region just upstream
og the nozzle is measured by the Kistler
gange. The impact pressure probe is used
to measure the distribution of the impact
pressure p, along the nozzle axis. Fig.ll
shows an eXample of time traces of p, and
p.. The traces show very similar pagterns,
wfth the first transient duration having
pressure rise and slight fall, followed by
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the second time interval with an
essentially constant pressure, which is
regarded as the testing time range, and
then further pressure fall after about
70ms from the onset of pulse. From the
measured values of p, and p, in the
testing time range at severdl axial posi~
tions x, the distribution of the free
stream Mach number M., and the corresgondﬂ
ing effective area ratio A/A*=(r/r¥*)

its square root r/r* (r is the radial
distance from the effective source, and *
denotes the effective throat condition),
are computed, and r/r* is plotted against
X in Ref.1l4. This x~(r/r*) relation was
shown to be straight approximately, which
means that the flow in the present conical
nozzle can be assumed to be a source flow.

II-B Distributions of surface pressures.

Although experimental pressure distri-
bution on the cone against s=r/r_ was
reported in Ref.14, this is again shown
as well as the new results on the 3/4
power—-law nosed cone. The pressure
coefficient C is referred to the local
free stream p?essure Py that is:

pb— pl

Cpl =

r

oyuy/2

Figs.6a and 7 show the experimental
pressure coefficients C against s for
the cone and the 3/4 poger—law body in the
source flow with the free stream Mach
number My at the nose of 7.5, respectively.
Also shown in these figures are inviscid,
theoretical resuts cbtained by the present
quasi-similarity approximation for y=1.4,
and also ones obtained by applying the
extended parallel-source equivalence for
power-law bodies. Comparisons between
theories and experiments give essentially
good correspondence except some discre-
pancies caused by the viscous effects,
which were not considered in the present
theories, and by experimental errors,
as well as by errors included in the
present empirical assumption.

Conclusions

First, the inviscid, hypersonic
quasi-similarity theory is applied to a
long body in a source flow, and practical
calculations for a cone and a 3/4 power-
law body are given. Second, the
linearized theory for a very slender
pointed body is treated by the method of
source distribudion, and the results for
a very slender cone in the source flow
with y=2, 1.5 and 4/3 are compared,
showing close coincidences each other.
Third, the one-to-one correspondence
between source flow and parallel one for
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power-law-bodies when y=2, is extendedly
applied to the case for any Yy, under the
empirical assumption that the pressure
coefficient in the flow is insensitive to
the difference of y. Last, experiments on
the source flow over a long cone and a 3/4
power-law body in the conical nozzle of

a hypersonic shock tunnel are described,
and the measured pressure distributions
are compared with the above theories,
giving essentially good coincidences
except discrepancies caused by the

viscous effects (which are not considered
in theories) and experimental errors.
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